Welcome to Central Library, SUST

Normal view MARC view ISBD view

Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations [electronic resource] /by Valery V. Kozlov, Stanislav D. Furta.

By: Kozlov, Valery V [author.].
Contributor(s): Furta, Stanislav D [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Monographs in Mathematics: Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.Description: XX, 264 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783642338175.Subject(s): Mathematics | Dynamics | Ergodic theory | Differential equations | Physics | Mathematics | Ordinary Differential Equations | Dynamical Systems and Ergodic Theory | Mathematical Methods in PhysicsDDC classification: 515.352 Online resources: Click here to access online
Contents:
Preface -- Semi-quasihomogeneous systems of ordinary differential equations -- 2. The critical case of purely imaginary kernels -- 3. Singular problems -- 4. The inverse problem for the Lagrange theorem on the stability of equilibrium and other related problems -- Appendix A. Nonexponential asymptotic solutions of systems of functional-differential equations -- Appendix B. Arithmetic properties of the eigenvalues of the Kovalevsky matrix and conditions for the nonintegrability of semi-quasihomogeneous systems of ordinary dierential equations -- Bibliography.
In: Springer eBooksSummary: The book is dedicated to the construction of particular solutions of systems of ordinary differential equations in the form of series that are analogous to those used in Lyapunov’s first method. A prominent place is given to asymptotic solutions that tend to an equilibrium position, especially in the strongly nonlinear case, where the existence of such solutions can’t be inferred on the basis of the first approximation alone. The book is illustrated with a large number of concrete examples of systems in which the presence of a particular solution of a certain class is related to special properties of the system’s dynamic behavior. It is a book for students and specialists who work with dynamical systems in the fields of mechanics, mathematics, and theoretical physics.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Semi-quasihomogeneous systems of ordinary differential equations -- 2. The critical case of purely imaginary kernels -- 3. Singular problems -- 4. The inverse problem for the Lagrange theorem on the stability of equilibrium and other related problems -- Appendix A. Nonexponential asymptotic solutions of systems of functional-differential equations -- Appendix B. Arithmetic properties of the eigenvalues of the Kovalevsky matrix and conditions for the nonintegrability of semi-quasihomogeneous systems of ordinary dierential equations -- Bibliography.

The book is dedicated to the construction of particular solutions of systems of ordinary differential equations in the form of series that are analogous to those used in Lyapunov’s first method. A prominent place is given to asymptotic solutions that tend to an equilibrium position, especially in the strongly nonlinear case, where the existence of such solutions can’t be inferred on the basis of the first approximation alone. The book is illustrated with a large number of concrete examples of systems in which the presence of a particular solution of a certain class is related to special properties of the system’s dynamic behavior. It is a book for students and specialists who work with dynamical systems in the fields of mechanics, mathematics, and theoretical physics.

There are no comments for this item.

Log in to your account to post a comment.

Library Hours

  • Open: 8.00 am. to 8.00 pm.
  • Closed: Holiday

Contact to the University Library

  • PABX- 2220 & 2708, 2709, 2710, 2719, 2250
  • E-Mail:library@sust.edu

Contact to the Librarian

About Library


Home | Contact

Update on ©2022
Copyright © 2022 Central Library
Shahjalal University of Science & Technology (SUST), Sylhet.